Rede de Computadores (Técnico em Informática) Protocolo Ethernet

Rafael Freitas Reale

reale@cefetba.br

http://www.cefetba.br/valenca/reale

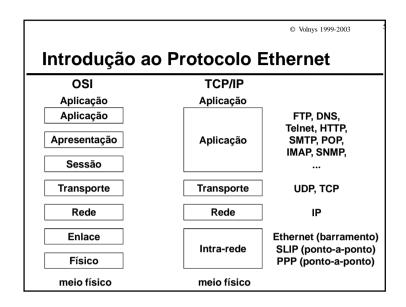
Volnys Borges Bernal

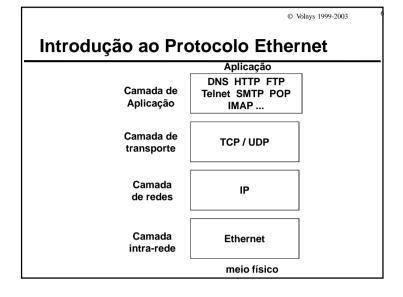
volnys@lsi.usp.br http://www.lsi.usp.br/~volnys

© Volnys 1999-2003

Introdução ao Protocolo Ethernet

© Volnys 1999-2003


Agenda


- □ Introdução ao Protocolo Ethernet
- □ Endereçamento Ethernet
- □ Frame Ethernet
- □ Equipamentos de Interconexão
 - ❖ Repetidor
 - ♦ HUB
 - Bridge
 - Switch
- □ CSMA/CD
- □ Protocolo IEEE 802.2 + IEEE 802.3

© Volnys 1999-2003

Introdução ao Protocolo Ethernet

- □ Protocolo Ethernet
 - Protocolo padrão da Internet (pilha TCP/IP) para a camada intrarede em redes locais
 - Características
 - tipo de rede lógica: multiponto (barramento)
 - protocolo de acesso ao meio: CSMA/CD
 - Objetivo:
 - Transferência de frames para máquinas que estão na mesma rede
 - ❖ O termo "Ethernet"
 - geralmente se refere ao padrão publicado em 1982 pela Digital e Xerox
 - Existe um padrão similar definido pelo IEEE (será visto logo em seguida)

Introdução ao Protocolo Ethernet

• O frame Ethernet é responsável pela transmissão de dados entre máquinas de uma mesma rede local que se utiliza do protocolo Ethernet

• Para um dado ser transmitido para outra máquina é necessário coloca-lo dentro de um frame Ethernet

• Pode-se fazer uma analogia entre o frame Ethernet e um caminhão:

• frame ethernet: Caminhão

• Dados (46 a 1500 octetos)

Endereçamento Ethernet

A1

B8

ident, da placa

Endereçamento Ethernet

- □ Endereço Ethernet
 - * Também chamado de
 - endereço físico
 - endereço de hardware
 - ou endereço MAC
 - . Composto por 6 bytes
 - Exemplo de endereço Ethernet: 00:C0:D2:A1:B8:32
 - ❖ O endereço Ethernet vem definido com a placa de rede
 - * Cada placa de rede possui um endereço físico distinto
 - * Endereços adotados pelos fabricantes é organizado pela IANA
 - IANA Internet Assigned Numbers Authority
 - http://www.iana.org
 - · selecione link "Protocol Numbers and Assignment Services"

CO

Fabricante

D2

- · selecione link "Ethernet Numbers"
- É apresentada uma lista parcial (a segunda) dos fabricantes

© Volnys 1999-2003

Endereçamento Ethernet

□ Para mostrar o endereco Ethernet no UNIX

ifconfig -a

lo Link encap:Local Loopback
inet:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNING MULTICAST MTU:3924 Metric:1
RXpackets:3205 errors:0 dropped:0 overruns:0 frame:0
Txpackets:3205 errors:0 dropped:0 oversuns:0 carrier:0
collisions:0 txqueuelen:0

eth0 Link encap: Ethernet HWaddr 00:80:AD:1A:93:87
inet:10.0.161.59 Bcast:10.0.161.255 Mask:255.255.254.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RXpackets:5823 errors:0 dropped:0 overruns:0 frame:259
Txpackets:4606 errors:0 dropped:0 oversuns:0 carrier:0
collisions:381 txqueuelen:100
Interrupt:10 Base Address:0x340

© Volnys 1999-2003

Endereçamento Ethernet

□ Para mostrar o endereço Ethernet no Windows

ipconfig /all

Host Name : angra.site.com.br
DNS Servers : 10.0.161.200
192.168.10.13

Node Type : Hybrid

NetBIOS Scope IP :
IP Routing Enabled : No
WINS Proxy Enabled : No
NetBIOS Resolution Uses DNS: Yes

0 Ethernet Adapter:

Description : DEC DC21140 PCI Fast Eth Adapter

Phisical Address : 00-60-67-30-D3-0D

DHCP Enable : No

IP Address : 10.0.161.50
Subnet Mask : 255.255.254.0
Default Gateway : 10.0.161.254
Primary WINS Server : 10.0.161.185
Secondary WINS Server : 10.0.161.186

© Volnys 1999-2003

Exercício

- (1) A respeito de endereços ethernet, responda:
- (a)Descubra o endereço Ethernet de sua máquina
- (b) Qual é o número do fabricante representado neste endereço Ethernet?
- (c) A partir deste número, descubra o fabricante (utilize uma lista de números de fabricantes)
- (d) Converta o endereço ethernet para o valor binário
- (e) Qual o valor do oitavo bit do endereço Ethernet de seu computador?

Frame Ethernet

© Volnys 1999-2003

Frame Ethernet

- □ Campo "Tipo"
 - Define o tipo da informação que o frame ethernet está transportando
 - * Alguns valores mais utilizados:

IP v4 : 0800ARP : 0806RARP : 8035

- Uma lista parcial dos valores possíveis está em:
 - http://www.iana.org
 - · link "Protocol Numbers and Assignment Services"
 - link "Ethernet Numbers"
 - A primeira lista apresentada no documento é uma lista parcial dos possíveis valores deste campo

© Volnys 1999-2003 **Frame Ethernet** Campos do frame ethernet ❖ Preâmbulo : Necessário para sincronização (7bytes 10101010) : Start of Frame Delimiter (10101011) * End. Destino: Endereço Ethernet do destinatário * End. Origem: Endereço Ethernet do emissor : Tipo de dado sendo transmitido Dados : Dados (eventualmente + pad) * CRC : Código de Redundância Cíclica 64 a 1518 octetos 8 octetos Preâm-hulo SFD destino origem tipo dados CRC 7 1 46-1500

© Volnys 1999-2003 **Frame Ethernet** □ Transmissão UNICAST * Endereço Destino: Endereço Ethernet da máquina destino Neste caso, oitavo bit do endereco ethernet destino sempre terá valor 0 (o oitavo bit é o primeiro bit a ser transmitido no fio!). Exemplo: 00 C 0 D 2 A 1 B 8 0000 0000 1100 0000 1101 0010 1010 0001 1011 1000 0011 0010 □ Trasmissão Broadcast * Endereço Destino: FF-FF-FF-FF □ Transmissão Multicast ❖ Endereço Destino: endereço multicast (um endereço ethernet com o oitavo bit do endereço ethernet destino = 1)

Frame Ethernet

□ MTU

- * Maximum Transmition Unit
- Unidade máxima de transmissão

□ Fragmentação

 Quando o frame a ser transmitido é maior do que o MTU o frame deve ser fragmentado (dividido em várias partes)

© Volnys 1999-2003

Exercício

(2) Seja um comptador A ligado a uma rede local que utiliza o protocolo Ethernet

Computador A:

Nome: terra

Endereço IP: 10.0.0.1

Endereço Ethernet: 00:C0:24:A5:43:8B

Mostre como seria o formato do frame Ethernet resultante de uma transmissão broadcast por A. Suponha que o frame Ethernet esteja carregando um frame ARP com 28 octetos.

- (3) Em um frame Ethernet qual deve ser o valor do campo tipo se estiver sendo transportado um frame IPv6 (IP versão 6)?
- (4) Qual o valor do parâmetro MTU associado à interface Ethernet de sua máquina?

© Volnys 1999-2003

Exercício

(1) Sejam dóis computadores (A e B) ligados a uma mesma rede local que utiliza o protocolo Ethernet

Computador A:

Nome: terra

Endereço IP: 10.0.0.1

Endereço Ethernet: 00:C0:24:A5:43:8B

Computador B: Nome: marte

Endereço IP: 10.0.0.2

Endereço Ethernet: 00:C0:24:A5:48:55

Mostre como seria o formato do frame Ethernet resultante de uma transmissão unicast de A para B. Suponha que o frame Ethernet

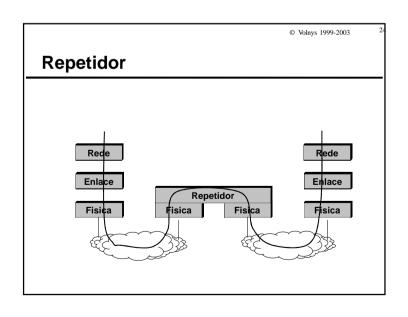
esteja carregando um frame IP com 125 octetos.

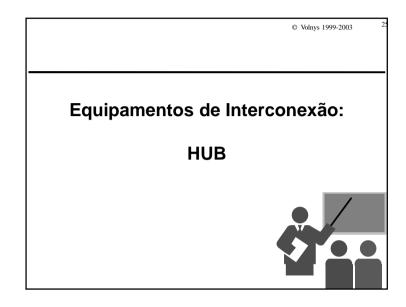
© Volnys 1999-2003

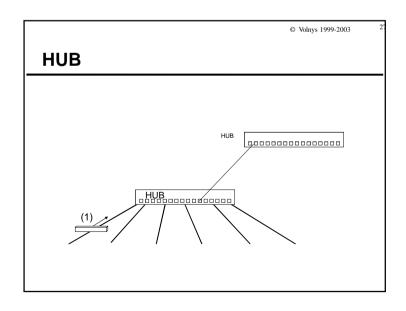
Equipamentos de Interconexão Camada Intra-rede

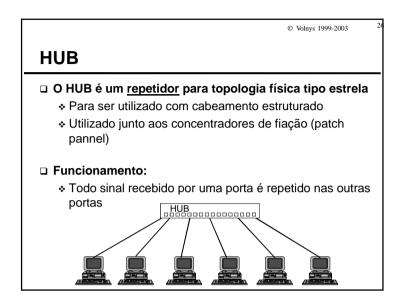
Equipamentos de Interconexão

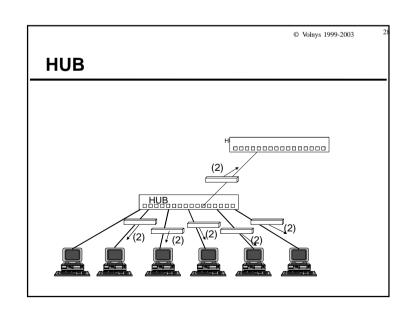
- □ Equipamentos de interconexão da camada intra-rede:
 - ❖ Repetição:
 - Repetidor
 - HUB
 - Chaveamento
 - Bridge
 - Switch

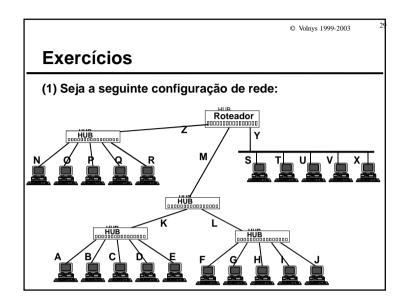

© Volnys 1999-2003


Repetidor


- □ Todo sinal recebido por uma porta é repetido nas outras portas
 - Latência mínima: Assim que o sinal chega por uma porta ele é recuperado e imediatamente transmitido para as outras portas
- □ Atua somente na camada 1 (camada física)
 - Ou seja, n\u00e3o interpreta os frames
- □ Funcionalidades
 - * Restauração de timing
 - ❖ Restauração de forma de onda


Equipamentos de Interconexão:

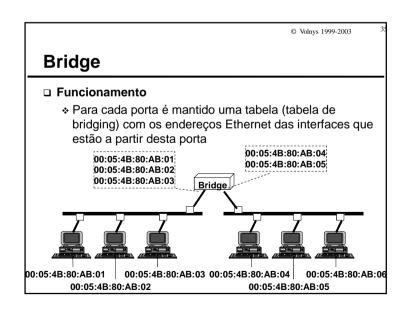

Repetidor

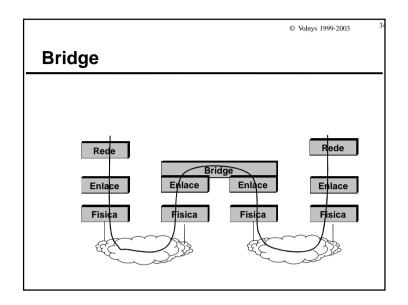




Exercícios

- (a) Quantos domínios de broadcast (ou redes locais) estão definidos nesta configuração?
- (b) Suponha que a máquina A transmita um frame ethernet unicast para B. Este frame ethernet irá chegar a quais interfaces de rede?
- (c) Suponha que a máquina A transmita um frame ethernet broadcast. Este frame ethernet irá chegar a quais interfaces de rede?
- (d) Suponha que a máquina A transmita um frame ethernet unicast para S. Este frame ethernet irá chegar a quais interfaces de rede?
- (e) Suponha que a máquina A transmita um frame ethernet broadcast para P. Este frame ethernet irá chegar a quais interfaces de rede?


Bridge


- "Ponte" entre redes
- Permite "juntar" duas redes locais (dois barramentos) formando uma única rede

Bridge

A bridge, ao invés do repetidor que sempre propaga um frame para todas as interfaces, irá somente propagar um frame para uma determinada interface quando for estritamente necessário.

Existem algumas restrições relativas à utilização de múltiplas bridges em uma rede como o de não permitir ciclos. Caso existam "ciclos" é necessário utilizar um protocolo complementar chamado "spawning tree".

© Volnys 1999-2003

Bridge

□ Funcionamento

- ❖ A "Tabela de Bridging" é construída dinâmicamente:
 - Quando um frame Ethernet é recebido por uma das portas, é obtido o endereço ethernet de origem do frame (máquina que o enviou).
 - É verificado se este endereço já existe na tabela de bridging desta porta
 - Se não existir, este é inserido
- Cada entrada possui um tempo limitado de vida.

Bridge

□ Para um frame unicast:

- * Quando chega um frame Unicast em uma porta:
 - É consultada a tabela de bridging da porta para verificar se a máquina destino se encontra a partir desta mesma porta.
 - Se estiver na tabela da mesma porta, descarta o frame
 - Senão, consulta as tabelas de bridging das outras portas
 - Se achar uma porta cuja tabela de bridging tenha o endereço Ethernet do destinatário, transmite o frame por esta porta
 - Se não achar em nenhuma porta, transmite para todas as portas

© Volnys 1999-2003

Equipamentos de Interconexão:

Switch

© Volnys 1999-2003

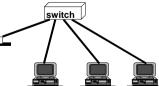
Bridge

□ Para um frame Broadcast:

- Quando chega um frame broadcast em uma porta
 - Transmite para todas as portas

© Volnys 1999-2003

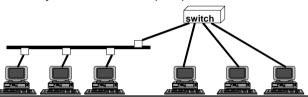
Switch


□ Evolução da Bridge:

- várias portas
- várias transmissões entre portas simultâneamente
- utilização de buffers (para enfileirar um frames quando a porta de destino está ocupada

□ Formas de operação

- ❖ Cut-throw (mais eficiênte)
- Store and Forward



Switch

□ Formas de operação

- Store and Forward
 - Armazena o frame inteiro (store) para então envia-lo pela porta destino
- Cut-throw (mais eficiênte)
 - Assim que o campo de destinatário é recebido pode começar a enviar o frame pela porta destino

© Volnys 1999-2003

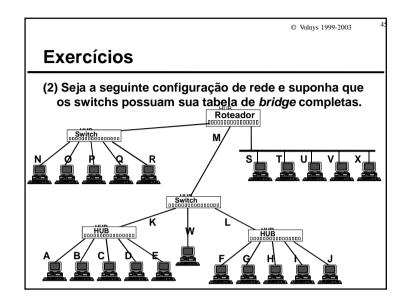
Roteador

- □ Camada de rede OSI (Camada 3)
 - Permite que o roteador tome decisões com base em grupos de endereços de rede (Classes) ao invés de endereços MAC individuais, como é feito na camada 2.
 - * Os roteadores podem também conectar diferentes tecnologias da camada 2, como Ethernet, Token-ring e FDDI.
- □ Os roteadores são os dispositivos de controle de tráfego mais importantes nas grandes redes.
- □ Determinam o melhor caminho para os pacotes através da rede e depois comutam os pacotes para a porta que vai levar ao seu endereço (IP) da rede de destino.

© Volnys 1999-2003

Switch

□ Transparent Bridge


- ❖ Descobre automaticamente os equipamentos que estão abaixo de cada porta de bridge
- ❖ Para cada porta mantém uma tabela com endereços ethernet dos equipamentos que estão abaixo da porta
- * Descoberta: Quando o primeiro frame proveniente do equipamento é recebido por uma porta é verificado o endereço ethernet de origem

© Volnys 1999-2003

Switch

□ Spaning Tree

* Protocolo que permite tratar conexões cíclicas, transformando em uma árvore

CSMA/CD

© Volnys 1999-2003

Exercícios

- (a) Suponha que a máquina A transmita um frame ethernet unicast para B. Este frame ethernet irá chegar a quais interfaces de rede?
- (b) Suponha que a máquina A transmita um frame ethernet broadcast. Este frame ethernet irá chegar a quais interfaces de rede?
- (c) Suponha que a máquina A transmita um frame ethernet unicast para W. Este frame ethernet irá chegar a quais interfaces de rede?
- (d) Suponha que a máquina A transmita um frame ethernet unicast para F. Este frame ethernet irá chegar a quais interfaces de rede?

© Volnys 1999-2003

CSMA/CD

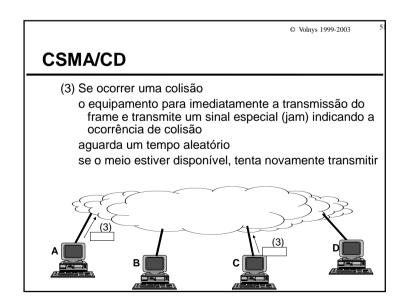
Utilizado quando é suposto que a comunicação seja realizada através de meio compartilhado, o que implica que exista somente um transmissor por vez (half-duplex).

CSMA/CD

Carrier Sense, Multiple Access with Colision Detection Carrier Sense

Antes de transmitir é verificado se o meio está disponível Multiple Access

Vários equipamentos podem transmitir no mesmo meio (rede multiponto: barramento)

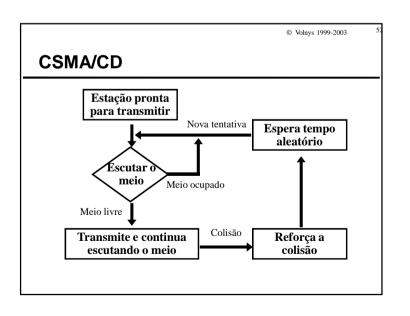

Colition Detection

Durante a transmissão do frame é verificado se ocorreu uma colisão

CSMA/CD

Funcionamento

(1) O equipamento A deseja transmitir um frame
Se o meio estiver ocupado (existe algum frame sendo transmitido), aguarda
Se o meio está disponível (não existe nenhum frame sendo transmitido), transmite o frame



CSMA/CD

(2) Durante a transmissão do frame, verifica se não ocorreu colisão

A colisão ocorre quando dois ou mais equipamentos transmitem frames ao mesmo tempo, misturando o sinal

O padrão define que a colisão, quando existir, deve obrigatóriamente ocorrer durante a transmissão dos primeiros 64 octetos (bytes) do frame

CSMA/CD

Colisão

Detecção

A colisão é detectada pela própria placa de rede através da comparação do sinal transmitido com o sinal recebido

Se este sinal for diferente, a placa supõe que tenha ocorrido uma colisão

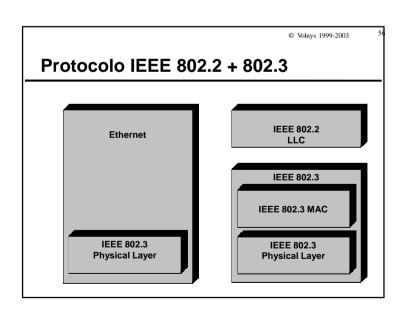
Quando detectada uma colisão, a placa envia um sinal especial (jam) indicando às outras máquinas que ocorreu uma colisão

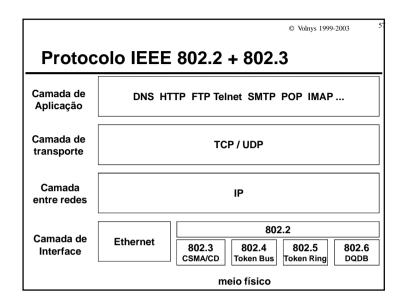
Ocorrência

Nas redes Ethernet sempre ocorrem colisões

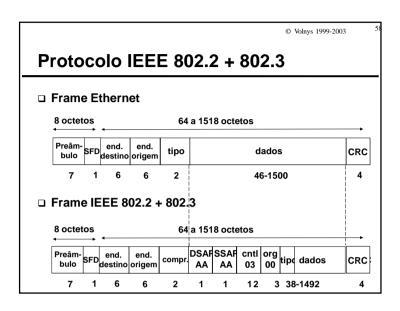
Porém, um numero excessivo de colisões pode indicar que o meio (barramento) possui:

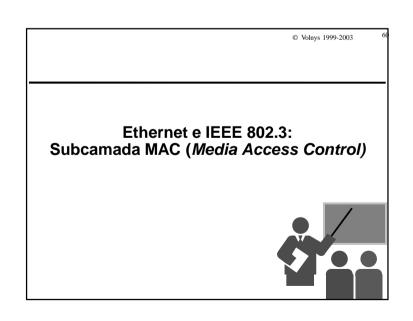
quantidade muito grande de equipamentos interconectados equipamentos com taxa de comunicação muito alta ambas as anteriores


© Volnys 1999-2003


Protocolo IEEE 802.2 + 802.3

□ Padrão 802

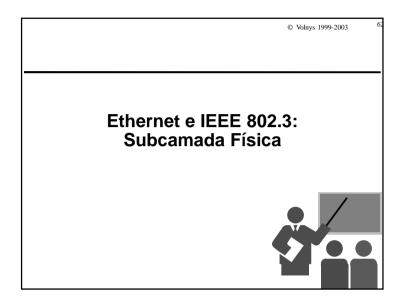

- Alguns anos após a definição do Ethernet o IEEE (Instituto dos Engenheiros Eletrônicos e Eletricistas) definiu o padrão IEEE 802.2, semelhante ao padrão Ethernet. Ambos são protocolos da camada "Intra-redes" da pilha TCP/IP.
- ❖ O IEEE 802 divide a camada intra-redes em três sub-camadas:
 - · LLC Logical Link Control
 - MAC Medium Access Control
 - Físico
- Assim, é possivel utilizar outros métodos de acesso ao meio, não necessariamente CSMA/CD:
 - 802.2 + 802.3 CSMA/CD
 - 802.2 + 802.4 token bus
 - 802.2 + 802.5 token ring
 - 802.2.+ 802.6 DQDB
- ❖ Ethernet: semelhante ao Protocolo IEEE 802.2 + IEEE 802.3

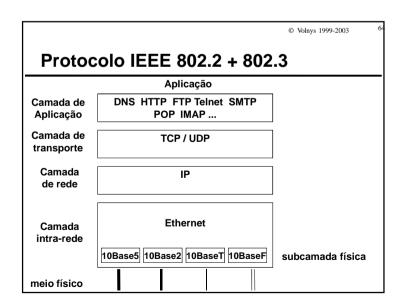

Ethernet x IEEE 802.2 + 802.3

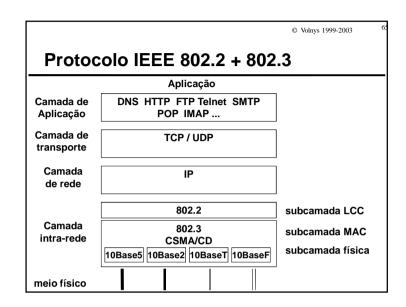
© Volnys 1999-2003 Ethernet x IEEE 802.2 + 802.3 Subcamada MAC Medium Access Control Responsável Pelo método de acesso ao meio Pela forma de recepção e transmissão do frame Ethernet Encapsulamento dos dados a serem transmitidos Transmissão do frame Recepção do frame Extração dos dados recebidos Não se importa com o meio físico Somente necessita a informação da velocidade de comunicação Subcamada Física Define a forma de interfaceamento com os diferentes meios físicos (conectores, cabos, sinais elétricos, parâmetros, etc.)

Protocolo IEEE 802.2 + 802.3

□ Subcamada MAC


- ❖ Medium Access Control
- * Responsável
 - Pelo método de acesso ao meio
 - Pela forma de recepção e transmissão do frame Ethernet
 - · Encapsulamento dos dados a serem transmitidos
 - Transmissão do frame
 - · Recepção do frame
 - Extração dos dados recebidos
- * IEEE 802.3 define formas de acesso ao meio:
 - Half Duplex (CSMA/CD)
 - Originalmente ethernet somente suportava Half-duplex
 - · Era suposto sempre um meio compartilhado (barramento)
 - Full Duplex
 - É suposto que o meio não é compartilhado
 - · Ou seja, comunicação ponto a ponto
 - · Ambas as interfaces devem suportar operar full-duplex


© Volnys 1999-2003


Protocolo IEEE 802.2 + 802.3

□ Subcamada Física

- Define a forma de interfaceamento com os diferentes meios físicos (conectores, cabos, sinais elétricos, parâmetros, etc)
- ❖ IEEE 802.3 suporta as seguintes subcamadas físicas:
 - 10Base5 500 m
 - 10Base2 185 m
 - 10BaseT 100 m
 - 10BaseF 2000 m

Diâmetro da Rede Ethernet

O que é?

Maior tempo de round-trip entre duas maquinas quaisquer

Ou seja ...

Define o diâmetro máximo de um segmento de repetição ethernet

Diâmetro da Rede Ethernet

© Volnys 1999-2003

© Volnys 1999-2003

Diâmetro da Rede Ethernet

Comprimento máximo do segmento

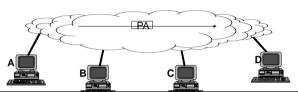
□Depende de:

tempo de propagação do meio físico

- tempo que o sinal leva para se propagar no meio físico
- depende do meio físico utilizado (coaxial, UTP, fibra)
- tamanho mínimo do frame Ethernet (64 bytes)
- ❖velocidade de transferência (Ethernet = 10Mbps)
- □Comprimento máximo do cabo:

♦Tt >= 2 Tp

- Tt Tempo de transmissão do menor frame (64 bytes)
- Tp Tempo de propagação do sinal entre dois pontos mais distantes (comprimento máximo) de um mesmo segmento de repetição


Diâmetro da Rede Ethernet

Definição do comprimento máximo do segmento

No pior caso ...

O equipamento A transmite o frame PA Imediatamente antes do frame PA chegar ao equipamento D, o equipamento D transmite o frame PD

O equipamento D irá detectar a colisão assim que o frame PA chegar a D (1 x Tp)

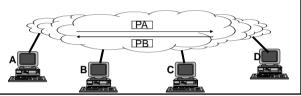
© Volnys 1999-2003

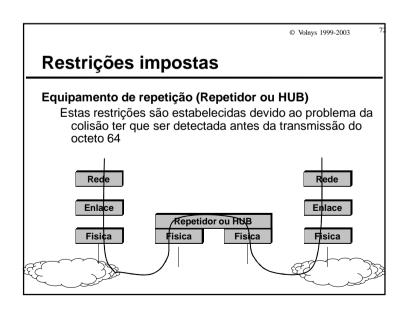
Restrições impostas devido à limitação do diâmetro da rede

© Volnys 1999-2003

Diâmetro da Rede Ethernet

Definição do comprimento máximo do segmento (cont.)


"A" irá detectar a colisão somente quando o frame PD chegar a "A" (~ 2 x Tp)


A colisão deve ocorrer antes de ser transmitido o último octeto (byte) do frame PA, ou seja:

Tt >= 2 Tp

Tp - Tempo de propagação do sinal entre A e D

Tt - Tempo de transmissão do menor frame (64 octetos)

Restrições impostas

Repetidor

Restrições quanto ao número de repetidores em cascata:

Utilizando somente cabo coaxial (10Base2 ou 10Base5)

Máximo de 4 repetidores entre dois nós Sendo que 2 segmentos não podem ser povoados!

Restrições impostas

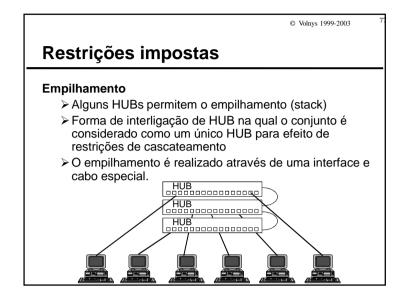
Exemplo

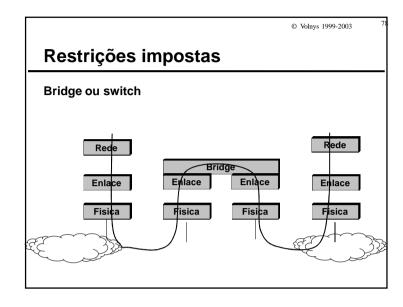
HUB
HUB
HUB
HUB
HUB

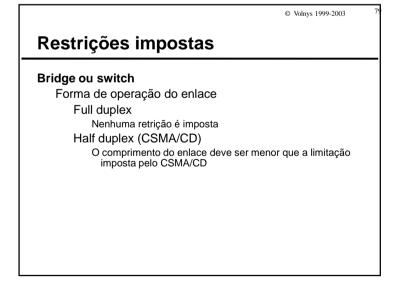
© Volnys 1999-2003

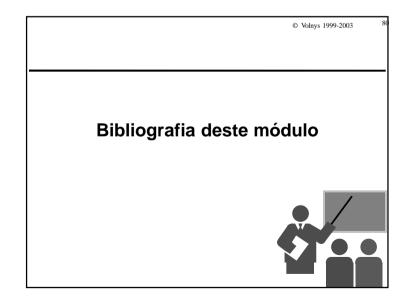
Restrições impostas

HUB


Restrições quanto ao número de HUBs em cascata: Máximo de 4 HUBs entre dois nós quaisquer


Em sistemas híbridos (UTP e coaxial):


Máximo de 4 repetidores (ou HUBs) entre dois nós quaisquer


Número máximo de 3 segmentos de cabo coaxial em um caminho

Bibliografia deste módulo

□ Livros

- * TCP/IP illustraded: volume 1 the protocols
 - STEVENS, W. RICHARD.
 - Addison-Wesley, 1994.
- * Redes de Computadores
 - TANENBAUM, ANDREW S.
 - Prentice Hall, 1996.
- * Redes de computadores: das LANs MANs e WANs às redes ATM
 - SOARES, LUIZ F. G.
 - Editora Campus, 1995